Chapter 1: Problem 20
Let a function \(f(x), x \neq 0\) be such that \(\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}\left(\frac{1}{\mathrm{x}}\right)\) then \(\mathrm{f}(\mathrm{x})\) can be (1) \(1-\mathrm{x}^{2013}\) (2) \(\sqrt{|x|}+1\) (3) \(\frac{\pi}{2 \tan ^{-1}|x|}\) (4) \(\frac{2}{1+\mathrm{k} \ell \mathrm{n}|\mathrm{x}|}, \mathrm{k}\) being arbitrary constant
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.