Chapter 11: Problem 6
If \(6 k-5 l=27\) and \(3 l-2 k=-13\) and \(5 k-5 l=j,\) what is the value of \(j ?\)
Chapter 11: Problem 6
If \(6 k-5 l=27\) and \(3 l-2 k=-13\) and \(5 k-5 l=j,\) what is the value of \(j ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(a\) is multiplied by 3 and the result is 4 less than 6 times \(b,\) what is the value of \(a-2 b ?\) a. -12 b. \(-\frac{4}{3}\) c. \(-\frac{3}{4}\) d. \(\frac{4}{3}\) e. 12
If \(x=3 a\) and \(y=9 b,\) then all of the following are equal to \(2(x+y)\) EXCEPT a. \(3(2 a+6 b)\) b. \(6(a+3 b)\) c. \(24\left(\frac{1}{4} a+\frac{3}{4} b\right)\) d. \(\frac{1}{3}(18 a+54 b)\) e. \(12\left(\frac{1}{2} a+\frac{3}{4} b\right)\)
If \(3^{3} \times 9^{12}=3^{\mathrm{x}},\) what is the value of \(x ?\)
$$11 x+14 y=30 \text { and } 3 x+4 y=12$$ $$\begin{array}{cc}\text { Quantity } \mathbf{A} & \text { Quantity } \mathbf{B} \\ x+y & (x+y)^{-2} \end{array}$$ a. Quantity A is greater. b. Quantity B is greater. c. The two quantities are equal. d. The relationship cannot be determined from the information given.
$$\begin{array}{cc}\text { Quantity } \mathbf{A} & \text { Quantity } \mathbf{B} \\ \frac{2^{-4}}{4^{-2}} & \frac{\sqrt{64}}{-2^{3}} \end{array}$$ a. Quantity A is greater b. Quantity B is greater. c. The two quantities are equal. d. The relationship cannot be determined from the information given.
What do you think about this solution?
We value your feedback to improve our textbook solutions.