Chapter 3: Problem 3
If Jane is currently willing to trade 4 movie tickets for 1 basketball ticket, then she must like basketball better than movies. True or false? Explain.
Chapter 3: Problem 3
If Jane is currently willing to trade 4 movie tickets for 1 basketball ticket, then she must like basketball better than movies. True or false? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe price of DVDs \((D)\) is \(\$ 20\) and the price of \(\operatorname{CDs}(C)\) is \(\$ 10 .\) Philip has a budget of \(\$ 100\) to spend on the two goods. Suppose that he has already bought one DVD and one CD. In addition, there are 3 more DVDs and 5 more CDs that he would really like to buy. a. Given the above prices and income, draw his budget line on a graph with CDs on the horizontal axis. b. Considering what he has already purchased and what he still wants to purchase, identify the three different bundles of CDs and DVDs that he could choose. For this part of the question, assume that he cannot purchase fractional units.
Brenda wants to buy a new car and has a budget of \(\$ 25,000 .\) She has just found a magazine that assigns each car an index for styling and an index for gas mileage. Each index runs from 1 to 10 , with 10 representing either the most styling or the best gas mileage. While looking at the list of cars, Brenda observes that on average, as the style index increases by one unit, the price of the car increases by \(\$ 5000\). She also observes that as the gas- mileage index rises by one unit, the price of the car increases by \(\$ 2500\) a. Illustrate the various combinations of style (S) and gas mileage (G) that Brenda could select with her \(\$ 25,000\) budget. Place gas mileage on the horizontal axis. b. Suppose Brenda's preferences are such that she always receives three times as much satisfaction from an extra unit of styling as she does from gas mileage. What type of car will Brenda choose? c. Suppose that Brenda's marginal rate of substitution (of gas mileage for styling) is equal to \(S /(4 G)\) What value of each index would she like to have in her car? d. Suppose that Brenda's marginal rate of substitution (of gas mileage for styling) is equal to \((3 S) / G\) What value of each index would she like to have in her car?
Connie has a monthly income of \(\$ 200\) that she allocates between two goods: meat and potatoes. a. Suppose meat costs \(\$ 4\) per pound and potatoes \(\$ 2\) per pound. Draw her budget constraint. b. Suppose also that her utility function is given by the equation \(U(M, P)=2 M+P .\) What combination of meat and potatoes should she buy to maximize her utility? (Hint: Meat and potatoes are perfect substitutes.) c. Connie's supermarket has a special promotion. If she buys 20 pounds of potatoes (at \(\$ 2\) per pound), she gets the next 10 pounds for free. This offer applies only to the first 20 pounds she buys. All potatoes in excess of the first 20 pounds (excluding bonus potatoes are still \(\$ 2\) per pound. Draw her budget constraint. d. An outbreak of potato rot raises the price of potatoes to \(\$ 4\) per pound. The supermarket ends its promotion. What does her budget constraint look like now? What combination of meat and potatoes maximizes her utility?
Ben allocates his lunch budget between two goods, pizza and burritos. a. Illustrate Ben's optimal bundle on a graph with pizza on the horizontal axis. b. Suppose now that pizza is taxed, causing the price to increase by 20 percent. Illustrate Ben's new optimal bundle. c. Suppose instead that pizza is rationed at a quantity less than Ben's desired quantity. Illustrate Ben's new optimal bundle.
Julio receives utility from consuming food ( \(F\) ) and clothing \((C)\) as given by the utility function \(U(F, C)=F C\) In addition, the price of food is \(\$ 2\) per unit, the price of clothing is \(\$ 10\) per unit, and Julio's weekly income is \$50. a. What is Julio's marginal rate of substitution of food for clothing when utility is maximized? Explain. b. Suppose instead that Julio is consuming a bundle with more food and less clothing than his utility maximizing bundle. Would his marginal rate of substitution of food for clothing be greater than or less than your answer in part a? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.