Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose an individual knows that the prices of a particular color TV have a uniform distribution between \(\$ 300\) and \(\$ 400\). The individual sets out to obtain price quotes by phone. a. Calculate the expected minimum price paid if this individual calls \(n\) stores for price quotes. b. Show that the expected price paid declines with \(n\), but at a diminishing rate. c. Suppose phone calls cost \(\$ 2\) in terms of time and effort. How many calls should this individual make in order to maximize his or her gain from search?

Short Answer

Expert verified
ores, we can use the formula for the expected value of the minimum of \(n\) independent random variables, which for a uniform distribution is \(E[min(X_1, X_2, ..., X_n)] = \frac{n}{n + 1}(b - a) + a\), where \(a\) and \(b\) are the lower and upper bounds of the distribution, respectively. Since the prices range between \(\$300\) and \(\$400\), we have \(a = 300\) and \(b = 400\). Thus, the expected minimum price for \(n\) calls is \(\frac{n}{n + 1}(400 - 300) + 300 = \frac{n}{n + 1}(100) + 300\). #tag_title# Step 2: Analyze the change in expected price with the number of calls #tag_content# To study how the expected minimum price declines with the number of calls, we can look at the derivative of the expected minimum price function with respect to \(n\): \(\frac{d}{dn} \left(\frac{n}{n + 1}(100) + 300\right)\). Simplifying the derivative, we get \(\frac{100}{(n + 1)^2}\). This shows that as \(n\) increases, the expected minimum price decreases at a diminishing rate since the function is always positive and decreasing. #tag_title# Step 3: Calculate the optimal number of calls to minimize overall cost #tag_content# To find the optimal number of calls, we need to consider the cost of the calls along with the expected minimum price of the TV. Let the cost of each call be denoted as \(c\). The overall cost of making \(n\) calls is \(nc + \frac{n}{n + 1}(100) + 300\). To minimize this cost, we can take the derivative of this function and find the critical points: \(\frac{d}{dn} \left(nc + \frac{n}{n + 1}(100) + 300\right)\). After simplifying the derivative, we get \(\frac{c(n + 1) - 100}{(n + 1)^2}\). To find the critical points, we set the derivative equal to 0 and solve for \(n\): \(\frac{c(n + 1) - 100}{(n + 1)^2} = 0\). Since the optimal number of calls must be a whole number, we need to evaluate the integer values of \(n\) that are close to the critical point and compare the overall costs to determine the optimal number of calls. In conclusion, to find the expected minimum price for calling \(n\) stores, we use the formula \(\frac{n}{n + 1}(100) + 300\). The price decreases at a diminishing rate as more calls are made. Finally, by considering the cost of the calls, we can find the optimal number of calls that minimizes the overall cost.

Step by step solution

01

Determine the expected minimum price for \(n\) calls

To find the expected minimum price when calling \(n\) st

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A farmer believes there is a \(50-50\) chance that the next growing season will be abnormally rainy. His expected utility function has the form \\[ \begin{array}{c} \mathbf{1} \\ \text { expected utility }=-\boldsymbol{I} \boldsymbol{n} \boldsymbol{Y}_{N R}+-\boldsymbol{I} \boldsymbol{n} \boldsymbol{Y}_{R} \end{array} \\] where \(Y_{N R}\) and \(Y_{R}\) represent the farmer's income in the states of "normal rain" and "rainy," respectively. a. Suppose the farmer must choose between two crops that promise the following income prospects: $$\begin{array}{lcr} \text { Crop } & Y_{H} & Y_{R} \\ \hline \text { Wheat } & \$ 28,000 & \$ 10,000 \\ \text { Corn } & 19,000 & 15,000 \end{array}$$ Which of the crops will he plant? b. Suppose the farmer can plant half his field with each crop. Would he choose to do so? Explain your result. c. What mix of wheat and corn would provide maximum expected utility to this farmer? d. Would wheat crop insurance, available to farmers who grow only wheat, which costs \(\$ 4000\) and pays off \(\$ 8000\) in the event of a rainy growing season, cause this farmer to change what he plants?

Suppose there are two types of workers, high-ability workers and low-ability workers. Workers' wages are determined by their ability- high ability workers earn \(\$ 50,000\) per year, low ability workers earn \(\$ 30,000 .\) Firms cannot measure workers' abilities but they can observe whether a worker has a high school diploma. Workers' utility depends on the difference between their wages and the costs they incur in obtaining a diploma. a. If the cost of obtaining a high school diploma is the same for high-ability and low-ability workers, can there be a separating equilibrium in this situation in which high-ability workers get high-wage jobs and low-ability workers get low wages? b. What is the maximum amount that a high-ability worker would pay to obtain a high school diploma? Why must a diploma cost more than this for a low-ability person if having a diploma is to permit employers to identify high-ability workers?

In Problem \(8.5,\) Ms. Fogg was quite willing to buy insurance against a 25 percent chance of losing \(\$ 1,000\) of her cash on her around-the-world trip. Suppose that people who buy such insurance tend to become more careless with their cash and that their probability of losing \(\$ 1,000\) rises to 30 percent. What is the actuarially fair insurance premium in this situation? Will Ms. Fogg buy insurance now? (Note: This problem and Problem 9.3 illustrate moral hazard.)

Blue-eyed people are more likely to lose their expensive watches than are brown-eyed people. Specifically, there is an 80 percent probability that a blue-eyed individual will lose a \(\$ 1,000\) watch during a year, but only a 20 percent probability that a brown-eyed person will. Blue-eyed and brown-eyed people are equally represented in the population. a. If an insurance company assumes blue-eyed and brown-eyed people are equally likely to buy watch-loss insurance, what will the actuarially fair insurance premium be? b. If blue-eyed and brown-eyed people have logarithmic utility-of-wealth functions and cur rent wealths of \(\$ 10,000\) each, will these individuals buy watch insurance at the premium calculated in part (a)? c. Given your results from part (b), will the insurance premiums be correctly computed? What should the premium be? What will the utility for each type of person be? d. Suppose that an insurance company charged different premiums for blue-eyed and brown-eyed people. How would these individuals' maximum utilities compare to those computed in parts (b) and (c)? (This problem is an example of adverse selection in insurance.)

For the constant relative risk aversion utility function (Equation 8.62 ) we showed that the degree of risk aversion is measured by \((1-R)\). In Chapter 3 we showed that the elasticity of substitution for the same function is given by \(1 /(1-R) .\) Hence, the measures are reciprocals of each other. Using this result, discuss the following questions: a. Why is risk aversion related to an individual's willingness to substitute wealth between states of the world? What phenomenon is being captured by both concepts? b. How would you interpret the polar cases \(R=1\) and \(R--^{\circ}\) in both the risk-aversion and substitution frameworks? c. A rise in the price of contingent claims in "bad" times \(\left(P_{b}\right)\) will induce substitution and income effects into the demands for \(W_{g}\) and \(W_{h}\). If the individual has a fixed budget to devote to these two goods, how will choices among them be affected? Why might \(W_{g}\) rise or fall depending on the degree of risk aversion exhibited by the individual? d. Suppose that empirical data suggest an individual requires an average return of 0.5 per cent if he or she is to be tempted to invest in an investment that has a \(50-50\) chance of gaining or losing 5 percent. That is, this person gets the same utility from \(W_{o}\) as from an even bet on \(1.055 W_{o}\) and \(0.955 W_{o}\) i. What value of \(R\) is consistent with this behavior? ii. How much average return would this person require to accept a \(50-50\) chance of gaining or losing 10 percent? Note: This part requires solving nonlinear equations, so approximate solutions will suffice. The comparison of the risk/reward trade-off illustrates what is called the "equity premium puzzle," in that risky investments seem to actually earn much more than is consistent with the degree of risk-aversion suggested by other data. See N. R. Kocherlakota, "The Equity Premium: It's Still a Puzzle" Journal of Economic Literature (March 1996 ): \(42-71\)

See all solutions

Recommended explanations on Economics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free