Chapter 2: Problem 10
Another function we will encounter often in this book is the "power function" \\[ y=x^{5} \\] where \(0^{\wedge} 5^{\wedge} 1\) (at times we will also examine this function for cases where 5 can be negative too, in which case we will use the form \(y-x^{5} / 8\) to ensure that the derivatives have the proper sign) a. Show that this function is concave (and therefore also, by the result of problem 2.8 , quasi-concave). Notice that the \(8=1\) is a special case and that the function is "strictly" concave only for \(8<1\) b. Show that the multivariate form of the power function is also concave (and quasi-concave). Explain why, in this case, the fact that/ \(_{12}=f_{i}>i-0\) makes the determination of concavity especially simple. One way to incorporate "scale" effects into the function described in part b is to use the monotonic transformation \\[ \left.g i_{x l,} x_{2}\right)=y i=\left[(x,)^{s}+\left(x_{2}\right)^{s}\right] y \\] where \(y\) is a positive constant. Does this transformation preserve the concavity of the function? Is \(g\) quasi-concave?