Chapter 13: Problem 7
The production function for a firm in the business of calculator assembly is given by \\[ q=2 V L \\] where \(q\) is finished calculator output and \(L\) represents hours of labor input. The firm is a price taker for both calculators (which sell for \(P\) ) and workers (which can be hired at a wage rate of \(w \text { per hour })\) a. What is the supply function for assembled calculators \([q=f(P, w)] ?\) b. Explain both algebraically and graphically why this supply function is homogeneous of degree zero in \(P\) and \(w\) and why profits are homogeneous of degree one in these vari ables. c. Show explicitly how changes in \(w\) shift the supply curve for this firm.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.