Chapter 9: Problem 2
Suppose the production function for widgets is given by $$q=k l-0.8 k^{2}-0.2 l^{2}$$ where \(q\) represents the annual quantity of widgets produced, \(k\) represents annual capital input, and \(l\) represents annual labor input. a. Suppose \(k=10 ;\) graph the total and average productivity of labor curves. At what level of labor input does this average productivity reach a maximum? How many widgets are produced at that point? b. Again assuming that \(k=10\), graph the \(M P_{l}\) curve. At what level of labor input does \(M P_{l}=0\) ? c. Suppose capital inputs were increased to \(k=20 .\) How would your answers to parts (a) and (b) change? d. Does the widget production function exhibit constant, increasing, or decreasing returns to scale?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.