Chapter 9: Problem 11
Suppose that a production function \(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) is homogeneous of degree \(k\). Euler's theorem shows that \(\sum_{i} x_{i} f_{i}=k f,\) and this fact can be used to show that the partial derivatives of \(f\) are homogeneous of degree \(k-1\) a. Prove that \(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} f_{i j}=k(k-1) f\) b. In the case of \(n=2\) and \(k=1\), what kind of restrictions does the result of part (a) impose on the second-order partial derivative \(f_{12} ?\) How do your conclusions change when \(k>1\) or \(k<1 ?\) c. How would the results of part (b) be generalized to a production function with any number of inputs? d. What are the implications of this problem for the parameters of the multivariable Cobb-Douglas production function \(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\) for \(\alpha_{i} \geq 0 ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.