Chapter 7: Problem 8
In Equation 7.30 we showed that the amount an individual is willing to pay to avoid a fair gamble \((h)\) is given by \(p=0.5 E\left(h^{2}\right) r(W),\) where \(r(W)\) is the measure of absolute risk aversion at this person's initial level of wealth. In this problem we look at the size of this payment as a function of the size of the risk faced and this person's level of wealth. a. Consider a fair gamble ( \(v\) ) of winning or losing \(\$ 1 .\) For this gamble, what is \(E\left(v^{2}\right) ?\) b. Now consider varying the gamble in part (a) by multiplying each prize by a positive constant \(k\). Let \(h=k v\). What is the value of \(E\left(h^{2}\right) ?\) c. Suppose this person has a logarithmic utility function \(U(W)=\ln W\). What is a general expression for \(r(W) ?\) d. Compute the risk premium ( \(p\) ) for \(k=0.5,1\), and 2 and for \(W=10\) and \(100 .\) What do you conclude by comparing the six values?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.