Chapter 5: Problem 13
The general form for the expenditure function of the almost ideal demand system (AIDS) is given by $$\ln E\left(p_{1}, \ldots, p_{n}, U\right)=a_{0}+\sum_{i=1}^{n} \alpha_{i} \ln p_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i j} \ln p_{i} \ln p_{j}+U \beta_{0} \prod_{i=1}^{k} p_{k}^{\beta_{k}}$$ For analytical ease, assume that the following restrictions apply:For analytical ease, assume that the following restrictions apply: $$\gamma_{i j}=\gamma_{j i}, \quad \sum_{i=1}^{n} \alpha_{i}=1, \quad \text { and } \quad \sum_{j=1}^{n} \gamma_{i j}=\sum_{k=1}^{n} \beta_{k}=0$$ a. Derive the AIDS functional form for a two-goods case. b. Given the previous restrictions, show that this expenditure function is homogeneous of degree 1 in all prices. This, along with the fact that this function resembles closely the actual data, makes it an "ideal" function. c. Using the fact that \(s_{x}=\frac{d \ln E}{d \ln p_{x}}\) (see Problem 5.8 ), calculate the income share of each of the two goods.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.