Chapter 2: Problem 6
A simple way to model the construction of an oil tanker is to start with a large rectangular sheet of steel that is \(x\) feet wide and \(3 x\) feet long. Now cut a smaller square that is \(t\) feet on a side out of each corner of the larger sheet and fold up and weld the sides of the steel sheet to make a traylike structure with no top. a. Show that the volume of oil that can be held by this tray is given by \\[ V=t(x-2 t)(3 x-2 t)=3 t x^{2}-8 t^{2} x+4 t^{3} \\] b. How should \(t\) be chosen to maximize \(V\) for any given value of \(x ?\) c. Is there a value of \(x\) that maximizes the volume of oil that can be carried? d. Suppose that a shipbuilder is constrained to use only 1,000,000 square feet of steel sheet to construct an oil tanker. This constraint can be represented by the equation \(3 x^{2}-4 t^{2}=1,000,000\) (because the builder can return the cut-out squares for credit). How does the solution to this constrained maximum problem compare with the solutions described in parts and (c)?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.