Chapter 2: Problem 16
Here are a few useful relationships related to the covariance of two random variables, \(x_{1}\) and \(x_{2}\) a show that \(\operatorname{Cov}\left(x_{1}, x_{2}\right)=E\left(x_{1} x_{2}\right)-E\left(x_{1}\right) E\left(x_{2}\right) .\) An important implication of this is that if \(\operatorname{Cov}\left(x_{1}, x_{2}\right)=0, E\left(x_{1} x_{2}\right)\) \(=E\left(x_{1}\right) E\left(x_{2}\right) .\) That is, the expected value of a product of two random variables is the product of these variables' expected values. b. Show that \(\operatorname{Var}\left(a x_{1}+b x_{2}\right)=a^{2} \operatorname{Var}\left(x_{1}\right)+b^{2} \operatorname{Var}\left(x_{2}\right)+2 a b \operatorname{Cov}\left(x_{1}, x_{2}\right)\) c. In Problem \(2.15 \mathrm{d}\) we looked at the variance of \(X=k x_{1}+(1-k) x_{2} \quad 0 \leq k \leq 1 .\) Is the conclusion that this variance is minimized for \(k=0.5\) changed by considering cases where \(\operatorname{Cov}\left(x_{1}, x_{2}\right) \neq 0 ?\) d. The correlation coefficient between two random variables is defined as \\[ \operatorname{Corr}\left(x_{1}, x_{2}\right)=\frac{\operatorname{Cov}\left(x_{1}, x_{2}\right)}{\sqrt{\operatorname{Var}\left(x_{1}\right) \operatorname{Var}\left(x_{2}\right)}} \\] Explain why \(-1 \leq \operatorname{Corr}\left(x_{1}, x_{2}\right) \leq 1\) and provide some intuition for this result. e. Suppose that the random variable \(y\) is related to the random variable \(x\) by the linear equation \(y=\alpha+\beta x\). Show that \\[ \beta=\frac{\operatorname{Cov}(y, x)}{\operatorname{Var}(x)} \\] Here \(\beta\) is sometimes called the (theoretical) regression coefficient of \(y\) on \(x\). With actual data, the sample analog of this expression is the ordinary least squares (OLS) regression coefficient.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.