Chapter 2: Problem 11
Another function we will encounter often in this book is the power function: \\[ y=x^{\delta} \\] the form \(y=x^{8} / 8\) to ensure that the derivatives have the proper sign). a. Show that this function is concave (and therefore also, by the result of Problem \(2.9,\) quasi-concave). Notice that the \(\delta=1\) is a special case and that the function is "strictly" concave only for \(\delta<1\) b. Show that the multivariate form of the power function \\[ y=f\left(x_{1}, x_{2}\right)=\left(x_{1}\right)^{8}+\left(x_{2}\right)^{8} \\] is also concave (and quasi-concave). Explain why, in this case, the fact that \(f_{12}=f_{21}=0\) makes the determination of concavity especially simple. c. One way to incorporate "scale" effects into the function described in part (b) is to use the monotonic transformation \\[ g\left(x_{1}, x_{2}\right)=y^{y}=\left[\left(x_{1}\right)^{8}+\left(x_{2}\right)^{8}\right]^{y} \\] where \(\gamma\) is a positive constant. Does this transformation preserve the concavity of the function? Is \(g\) quasi-concave?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.