Chapter 18: Problem 9
Consider the principal-agent relationship between a patient and doctor. Suppose that the patient's utility function is given by \(U_{P}(m, x),\) where \(m\) denotes medical care (whose quantity is determined by the doctor) and \(x\) denotes other consumption goods. The patient faces budget constraint \(I_{c}=p_{m} m+x,\) where \(p_{m}\) is the relative price of medical care. The doctor's utility function is given by \(U_{d}\left(I_{d}\right)+U_{P}-\) that is, the doctor derives utility from income but, being altruistic, also derives utility from the patient's well-being. Moreover, the additive specification implies that the doctor is a perfect altruist in the sense that his or her utility increases one-for-one with the patient's. The doctor's income comes from the patient's medical expenditures: \(I_{d}=p_{m} m .\) Show that, in this situation, the doctor will generally choose a level of \(m\) that is higher than a fully informed patient would choose.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.