Chapter 17: Problem 6
A high-pressure life insurance salesman was heard to make the following argument: "At your age a \(\$ 100,000\) whole life policy is a much better buy than a similar term policy. Under a whole life policy you'll have to pay \(\$ 2,000\) per year for the first four years but nothing more for the rest of your life. A term policy will cost you \(\$ 400\) per year, essentially forever. If you live 35 years, you'll pay only \(\$ 8,000\) for the whole life policy, but \(\$ 14,000(=\$ 400 \cdot 35)\) for the term policy. Surely, the whole life is a better deal." Assuming the salesman's life expectancy assumption is correct, how would you evaluate this argument? Specifically, calculate the present discounted value of the premium costs of the two policies assuming the interest rate is 10 percent.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.