Chapter 14: Problem 11
An alternative way to study the welfare properties of a monopolist's choices is to assume the existence of a utility function for the customers of the monopoly of the form utility \(=U(Q, X),\) where \(Q\) is quantity consumed and \(X\) is the quality associated with that quantity. A social planner's problem then would be to choose \(Q\) and \(X\) to maximize social welfare as represented by \(S W=U(Q, X)-C(Q, X)\). a. What are the first-order conditions for a welfare maximum? b. The monopolist's goal is to choose the \(Q\) and \(X\) that maximize \(\pi=P(Q, X) \cdot Q-C(Q, X) .\) What are the first-order conditions for this maximization? c. Use your results from parts (a) and (b) to show that, at the monopolist's preferred choices, \(\partial S W / \partial Q>0\). That is, as we have already shown, prove that social welfare would be improved if more were produced. Hint: Assume that \(\partial U / \partial Q=P\) d. Show that, at the monopolist's preferred choices, the sign of \(\partial S W / \partial X\) is ambiguous-that is, it cannot be determined (on the sole basis of the general theory of monopoly) whether the monopolist produces either too much or too little quality.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.