Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Smith and Jones are stranded on a desert island. Each has in his possession some slices of ham \((H)\) and cheese (C). Smith is a choosy eater and will eat ham and cheese only in the fixed proportions of 2 slices of cheese to 1 slice of ham. His utility function is given by \(U_{s}=\min (H, C / 2)\) Jones is more flexible in his dietary tastes and has a utility function given by \(U_{j}=4 H+3 C\). Total endowments are 100 slices of ham and 200 slices of cheese. a. Draw the Edgeworth box diagram that represents the possibilitics for exchange in this situation. What is the only exchange ratio that can prevail in any equilibrium? b. Suppose Smith initially had \(40 \mathrm{H}\) and \(80 \mathrm{C}\). What would the equilibrium position be? c. Suppose Smith initially had \(60 H\) and \(80 C\). What would the equilibrium position be? d. Suppose Smith (much the stronger of the two) decides not to play by the rules of the game. Then what could the final equilibrium position be?

Short Answer

Expert verified
Answer: The equilibrium position would be where Smith has 40 slices of ham and 80 slices of cheese, and Jones has the remaining 60 slices of ham and 120 slices of cheese.

Step by step solution

01

Analyzing Smith and Jones' utility functions

Smith's utility function is given by \(U_s=\min(H, C/2)\). This means that Smith only gains utility from consuming 2 slices of cheese for every 1 slice of ham. On the other hand, Jones' utility function is given by \(U_j=4H+3C\), which means Jones always gains utility from consuming both ham and cheese.
02

Creating an Edgeworth Box

The total endowment of goods is 100 slices of ham and 200 slices of cheese. In this scenario, the Edgeworth box has dimensions 100 units for the length (ham) and 200 units for the height (cheese).
03

a. Identifying the Exchange Ratio

Since Smith only gains utility from consuming 2 slices of cheese for every 1 slice of ham, the only exchange ratio that can prevail in any equilibrium is 2 slices of cheese for 1 slice of ham. This exchange ratio can be represented as a line with slope -2 in the Edgeworth box diagram.
04

b. Equilibrium when Smith has \(40H\) and \(80C\) initially

Smith must consume ham and cheese in a 1:2 ratio for him to gain any utility. So if Smith has 40 slices of ham, he needs exactly 80 slices of cheese to maximize his utility. Given the initial endowment, the equilibrium position would be where Smith has 40 slices of ham and 80 slices of cheese, and Jones has the remaining 60 slices of ham and 120 slices of cheese.
05

c. Equilibrium when Smith has \(60H\) and \(80C\) initially

In this scenario, Smith can only consume 40 slices of ham alongside 80 slices of cheese. This means that 20 slices of ham will be left unused since Smith cannot consume more due to the fixed ratio of consumption. The equilibrium position would be where Smith has 40 slices of ham and 80 slices of cheese, and Jones has the remaining 60 slices of ham and 120 slices of cheese (with 20 slices of ham being unused by Smith).
06

d. Final equilibrium if Smith does not play by the rules

Suppose Smith decides to consume more ham and cheese without following the 1:2 ratio. In this case, the exact equilibrium position would depend on the choices Smith makes. It should be noted that Smith would not be maximizing his utility if he chooses not to follow the 1:2 ratio of consuming ham and cheese. The final equilibrium position could essentially be any allocation of ham and cheese between Smith and Jones, as long as Smith is not consuming ham and cheese according to the 1:2 ratio.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose there are only three goods \(\left(x_{1}, x_{2}, x_{3}\right)\) in an economy and that the excess demand functions for \(x_{2}\) and \(x_{3}\) are given by \\[ \begin{array}{l} E D_{2}=-\frac{3 p_{2}}{p_{1}}+\frac{2 p_{3}}{p_{1}}-1 \\ E D_{3}=-\frac{4 p_{2}}{p_{1}}-\frac{2 p_{3}}{p_{1}}-2 \end{array} \\] a Show that these functions are homogencous of degree 0 in \(p_{1}, p_{2},\) and \(p_{3}\) b. Use Walras' law to show that, if \(E D_{2}=E D_{3}=0,\) then \(E D_{1}\) must also be \(0 .\) Can you also use Walras' law to calculate \(E D_{1} ?\) c. Solve this system of equations for the equilibrium relative prices \(p_{2} / p_{1}\) and \(p_{3} / p_{1}\). What is the equilibrium value for \(p_{3} / p_{2} ?\)

Suppose two individuals (Smith and Jones) each have 10 hours of labor to devote to producing either ice cream (x) or chicken soup \((y) .\) Smith's utility function is given by \\[ U_{s}=x^{0.3} y^{07} \\] whereas Jones" is given by \\[ U_{I}=x^{0.5} y^{0.5} \\] The individuals do not care whether they produce \(x\) or \(y\), and the production function for each good is given by \\[ x=2 l \text { and } y=3 l \\] where \(l\) is the total labor devoted to production of each good. a. What must the price ratio, \(p_{x} / p_{y}\) be? b. Given this price ratio, how much \(x\) and \(y\) will Smith and Jones demand? Hint: Set the wage equal to 1 here. c. How should labor be allocated between \(x\) and \(y\) to satisfy the demand calculated in part (b)?

Consider an economy with just one technique available for the production of each good. \\[ \begin{array}{lcc} \text { Good } & \text { Food } & \text { Cloth } \\ \hline \text { Labor per unit output } & 1 & 1 \\ \text { Land per unit output } & 2 & 1 \\ \hline \end{array} \\] a. Suppose land is unlimited but labor equals 100 . Write and sketch the production possibility fronticr. b. Suppose labor is unlimited but land equals \(150 .\) Write and sketch the production possibility frontier. c. Suppose labor equals 100 and land equals \(150 .\) Write and sketch the production possibility frontier. Hint: What are the intercepts of the production possibility frontier? When is land fully employed? Labor? Both? Explain why the production possibility frontier of part (c) is concave. e. Sketch the relative price of food as a function of its output in part (c). f. If consumers insist on trading 4 units of food for 5 units of cloth, what is the relative price of food? Why? g. Explain why production is exactly the same at a price ratio of \(p_{F} / p_{C}=1.1\) as at \(p_{F} / p_{C}=1.9\) h. Suppose that capital is also required for producing food and clothing and that capital requirements per unit of food and per unit of clothing are 0.8 and \(0.9,\) respectively. There are 100 units of capital available. What is the production possibility curve in this case? Answer part (e) for this case.

The construction of the production possibility curve shown in Figures 13.2 and 13.3 can be used to illustrate three important "theorems" in international trade theory. To get started, notice in Figure 13.2 that the efficiency line \(O_{x}, O_{y}\) is bowed above the main diagonal of the Edgeworth box. This shows that the production of good \(x\) is always "capital intensive" relative to the production of good \(y\). That is, when production is efficient, \(\left(\frac{5}{7}\right)_{x}>\left(\frac{5}{1}\right)\), no matter how much of the goods are produced. Demonstration of the trade theorems assumes that the price ratio, \(p=p_{x} / p_{y}\) is determined in international markets-the domestic economy must adjust to this ratio (in trade jargon, the country under examination is assumed to be "a small country in a large world"). a Factor price equalization theorem: Use Figure 13.4 to show how the international price ratio, \(p\), determines the point in the Edgeworth box at which domestic production will take place. Show how this determines the factor price ratio, \(w / v\). If production functions are the same throughout the world, what will this imply about relative factor prices throughout the world? b. Stolper-Samuelson theorem: An increase in \(p\) will cause the production to move clockwise along the production possibility frontier \(-x\) production will increase and \(y\) production will decrease. Use the Edgeworth box diagram to show that such a move will decrease \(k / l\) in the production of both goods. Explain why this will cause \(w / v\) to decrease. What are the implications of this for the opening of trade relations (which typically increases the price of the good produced intensively with a country's most abundant input). c. Rybczynski theorem: Suppose again that \(p\) is set by external markets and does not change. Show that an increase in \(k\) will increase the output of \(x\) (the capital-intensive good) and reduce the output of \(y\) (the labor-intensive good).

In the country of Ruritania there are two regions, \(A\) and \(B\). Two goods \((x \text { and } y)\) are produced in both regions. Production functions for region \(A\) are given by \\[ \begin{array}{l} x_{A}=\sqrt{l_{x}} \\ y_{A}=\sqrt{l_{y}} \end{array} \\] here \(l_{x}\) and \(l_{y}\) are the quantities of labor devoted to \(x\) and \(y\) production, respectively. Total labor available in region \(A\) is 100 units; that is, \\[ l_{x}+l_{y}=100 \\] Using a similar notation for region \(B\), production functions are given by \\[ \begin{array}{l} x_{B}=\frac{1}{2} \sqrt{l_{x}} \\ y_{B}=\frac{1}{2} \sqrt{l_{y}} \end{array} \\] There are also 100 units of labor available in region \(B\) ? \\[ l_{x}+l_{y}=100 \\] a. Calculate the production possibility curves for regions \(A\) and \(B\). b. What condition must hold if production in Ruritania is to be allocated efficiently between regions \(A\) and \(B\) (assuming labor cannot move from one region to the other \() ?\) c. Calculate the production possibility curve for Ruritania (again assuming labor is immobile between regions). How much total \(y\) can Ruritania produce if total \(x\) output is \(12 ?\) Hint: \(\mathrm{A}\) graphical analysis may be of some help here.

See all solutions

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free