Chapter 13: Problem 11
Suppose there are only three goods \(\left(x_{1}, x_{2}, x_{3}\right)\) in an economy and that the excess demand functions for \(x_{2}\) and \(x_{3}\) are given by \\[ \begin{array}{l} E D_{2}=-\frac{3 p_{2}}{p_{1}}+\frac{2 p_{3}}{p_{1}}-1 \\ E D_{3}=-\frac{4 p_{2}}{p_{1}}-\frac{2 p_{3}}{p_{1}}-2 \end{array} \\] a Show that these functions are homogencous of degree 0 in \(p_{1}, p_{2},\) and \(p_{3}\) b. Use Walras' law to show that, if \(E D_{2}=E D_{3}=0,\) then \(E D_{1}\) must also be \(0 .\) Can you also use Walras' law to calculate \(E D_{1} ?\) c. Solve this system of equations for the equilibrium relative prices \(p_{2} / p_{1}\) and \(p_{3} / p_{1}\). What is the equilibrium value for \(p_{3} / p_{2} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.