Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The development of optimal tax policy has been a major topic in public finance for centuries. \(^{17}\) Probably the most famous result in the theory of optimal taxation is due to the English economist Frank Ramsey, who conceptualized the problem as how to structure a tax system that would collect a given amount of revenues with the minimal deadweight loss. \(^{18}\) Specifically, suppose there are \(n\) goods \(\left(x_{i} \text { with prices } p_{i}\right)\) to be taxed with a sequence of ad valorem taxes (see Problem 12.10 ) whose rates are given by \(t_{i}(i=1, n) .\) Therefore, total tax revenue is given by \(T=\sum_{i=1}^{n} t_{i} p_{i} x_{i} .\) Ramsey's problem is for a fixed \(T\) to choose tax rates that will minimize total deadweight loss \(D W=\sum_{i=1}^{n} D W\left(t_{i}\right)\) a. Use the Lagrange multiplier method to show that the solution to Ramsey's problem requires \(t_{i}=\lambda\left(1 / e_{s}-1 / e_{\mathrm{D}}\right),\) where \(\lambda\) is the Lagrange multiplier for the tax constraint. b. Interpret the Ramsey result intuitively. c. Describe some shortcomings of the Ramsey approach to optimal taxation.

Short Answer

Expert verified
Answer: The optimal tax rates for each good (t_i) should be proportional to the difference between the reciprocals of the supply and demand elasticities. Goods with a low elasticity of demand and/or high elasticity of supply should have a higher tax rate in order to minimize the deadweight loss.

Step by step solution

01

1. Objective Function

The first step is to set up the objective function for the Ramsey problem: \( Minimize: DW = \sum_{i=1}^{n}DW(t_i)\) \( Subject \ to: T = \sum_{i=1}^{n}t_ip_ix_i\), where \(DW\) is the total deadweight loss, \(t_i\) is the tax rate for good i, \(p_i\) is the price for good i, \(x_i\) is the quantity of good i, and \(T\) is the total tax revenue.
02

2. Lagrange Multiplier Method

The Lagrange multiplier method can be used to minimize deadweight loss subject to the tax revenue constraint: \(L = \sum_{i=1}^{n} DW(t_i) + \lambda \left( T - \sum_{i=1}^{n} t_ip_ix_i \right)\), where \(\lambda\) is the Lagrange multiplier. Differentiate L with respect to \(t_i\): \(\frac{dL}{dt_i} = \frac{dDW(t_i)}{dt_i} - \lambda p_ix_i = 0\) Now, isolate \(t_i\): \(t_i = \lambda \left(\frac{1}{e_S} - \frac{1}{e_D}\right)\), where \(e_S\) and \(e_D\) are the elasticity of supply and demand, respectively.
03

3. Interpretation of the Ramsey result

The Ramsey result can be interpreted as follows: the optimal tax rates for each good (\(t_i\)) are proportional to the difference between the reciprocals of the supply and demand elasticities. Goods with a low elasticity of demand and/or high elasticity of supply should have a higher tax rate in order to minimize the deadweight loss.
04

4. Shortcomings of the Ramsey approach

There are several shortcomings of the Ramsey approach to optimal taxation: 1. It does not address equity concerns, i.e., it does not consider the distribution of income or welfare among individuals. 2. It assumes that there is perfect competition in the market, and therefore does not account for market imperfections or distortions. 3. It may not be possible to accurately measure the elasticity of supply and demand for all goods in the economy, which would make it challenging to implement the Ramsey tax rates in practice. 4. The Ramsey result is based on ad valorem taxes, which may not be applicable to other forms of taxation such as income, consumption, or property taxes.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose there are 1,000 identical firms producing diamonds. Let the total cost function for each firm be given by \\[ C(q, w)=q^{2}+w q \\] where \(q\) is the firm's output level and \(w\) is the wage rate of diamond cutters. a. If \(w=10\), what will be the firm's (short-run) supply curve? What is the industry's supply curve? How many diamonds will be produced at a price of 20 each? How many more diamonds would be produced at a price of \(21 ?\) b. Suppose the wages of diamond cutters depend on the total quantity of diamonds produced, and suppose the form of this relationship is given by \\[ w=0.002 Q \\] here \(Q\) represents total industry output, which is 1,000 times the output of the typical firm. In this situation, show that the firm's marginal cost (and short-run supply) curve depends on \(Q\). What is the industry supply curve? How much will be produced at a price of \(20 ?\) How much more will be produced at a price of \(21 ?\) What do you conclude about the shape of the short-run supply curve?

Throughout this chapter's analysis of taxes we have used per-unit taxes-that is, a tax of a fixed amount for each unit traded in the market. A similar analysis would hold for ad valorem taxes-that is, taxes on the value of the transaction (or, what amounts to the same thing, proportional taxes on price). Given an ad valorem tax rate of \(t(t=0.05 \text { for a } 5\) percent tax), the gap between the price demanders pay and what suppliers receive is given by \(P_{D}=(1+t) P_{S}\) a. Show that for an ad valorem tax \\[ \frac{d \ln P_{D}}{d t}=\frac{e_{S}}{e_{S}-e_{D}} \quad \text { and } \quad \frac{d \ln P_{S}}{d t}=\frac{e_{D}}{e_{S}-e_{D}} \\] b. Show that the excess burden of a small tax is \\[ D W=-0.5 \frac{e_{D} e_{S}}{e_{S}-e_{D}} t^{2} P_{0} Q_{0} \\] c. Compare these results with those derived in this chapter for a unit tax.

The handmade snuffbox industry is composed of 100 identical firms, each having short-run total costs given by \\[ S T C=0.5 q^{2}+10 q+5 \\] and short-run marginal costs given by \\[ S M C=q+10 \\] where \(q\) is the output of snuffboxes per day. a. What is the short-run supply curve for each snuffbox maker? What is the short-run supply curve for the market as a whole? b. Suppose the demand for total snuffbox production is given by \\[ Q=1,100-50 P \\] What will be the equilibrium in this marketplace? What will each firm's total short-run profits be? c. Graph the market equilibrium and compute total short-run producer surplus in this case. d. Show that the total producer surplus you calculated in part (c) is equal to total industry profits plus industry short-run fixed costs. e. Suppose the government imposed a \(\$ 3\) tax on snuffboxes. How would this tax change the market equilibrium? f. How would the burden of this tax be shared between snuffbox buyers and sellers? g. Calculate the total loss of producer surplus as a result of the taxation of snuffboxes. Show that this loss equals the change in total short-run profits in the snuffbox industry. Why do fixed costs not enter into this computation of the change in short-run producer surplus?

The domestic demand for portable radios is given by $$Q=5,000-100 \mathrm{P}$$ where price \(\mathrm{(P)}\) is measured in dollars and quantity \(\mathrm{(Q)}\) is measured in thousands of radios per year. The domestic supply curve for radios is given by $$Q=150 \mathrm{P}$$ a. What is the domestic equilibrium in the portable radio market? b. Suppose portable radios can be imported at a world price of $$\$ 10$$ per radio. If trade were unencumbered, what would the new market equilibrium be? How many portable radios would be imported? c. If domestic portable radio producers succeeded in having a $$\$ 5$$ tariff implemented, how would this change the market equilibrium? How much would be collected in tariff revenues? How much consumer surplus would be transferred to domestic producers? What would the deadweight loss from the tariff be? d. How would your results from part (c) be changed if the government reached an agreement with foreign suppliers to "voluntarily" limit the portable radios they export to \(1,250,000\) per year? Explain how this differs from the case of a tariff.

Suppose there are 100 identical firms in a perfectly competitive industry. Each firm has a short-run total cost function of the form \\[ C(q)=\frac{1}{300} q^{3}+0.2 q^{2}+4 q+10 \\] a. Calculate the firm's short-run supply curve with \(q\) as a function of market price (P). b. On the assumption that there are no interaction effects among costs of the firms in the industry, calculate the short-run industry supply curve. c. Suppose market demand is given by \(Q=-200 P+8,000 .\) What will be the short-run equilibrium price-quantity combination?

See all solutions

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free