Chapter 12: Problem 11
The development of optimal tax policy has been a major topic in public finance for centuries. \(^{17}\) Probably the most famous result in the theory of optimal taxation is due to the English economist Frank Ramsey, who conceptualized the problem as how to structure a tax system that would collect a given amount of revenues with the minimal deadweight loss. \(^{18}\) Specifically, suppose there are \(n\) goods \(\left(x_{i} \text { with prices } p_{i}\right)\) to be taxed with a sequence of ad valorem taxes (see Problem 12.10 ) whose rates are given by \(t_{i}(i=1, n) .\) Therefore, total tax revenue is given by \(T=\sum_{i=1}^{n} t_{i} p_{i} x_{i} .\) Ramsey's problem is for a fixed \(T\) to choose tax rates that will minimize total deadweight loss \(D W=\sum_{i=1}^{n} D W\left(t_{i}\right)\) a. Use the Lagrange multiplier method to show that the solution to Ramsey's problem requires \(t_{i}=\lambda\left(1 / e_{s}-1 / e_{\mathrm{D}}\right),\) where \(\lambda\) is the Lagrange multiplier for the tax constraint. b. Interpret the Ramsey result intuitively. c. Describe some shortcomings of the Ramsey approach to optimal taxation.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.