Chapter 10: Problem 6
An enterprising entrepreneur purchases two firms to produce widgets. Each firm produces identical products, and each has a production function given by \\[ q=\sqrt{k_{i} l_{i}}, \quad i=1,2 \\] The firms differ, however, in the amount of capital equipment each has. In particular, firm I has \(k_{1}=25\) whereas firm 2 has \(k_{2}=100 .\) Rental rates for \(k\) and \(l\) are given by \(w=v=\$ 1\) a. If the entrepreneur wishes to minimize short-run total costs of widget production, how should output be allocated between the two firms? b. Given that output is optimally allocated between the two firms, calculate the short-run total, average, and marginal cost curves. What is the marginal cost of the 100 th widget? The 125 th widget? The 200 th widget? c. How should the entrepreneur allocate widget production between the two firms in the long run? Calculate the long-run total, average, and marginal cost curves for widget production. d. How would your answer to part (c) change if both firms exhibited diminishing returns to scale?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.