Chapter 9: Problem 8
In each case, show that \(M_{D B}(T)\) is invertible and use the fact that \(M_{B D}\left(T^{-1}\right)=\left[M_{B D}(T)\right]^{-1}\) to determine the action of \(T^{-1}\). a. \(T: \mathbf{P}_{2} \rightarrow \mathbb{R}^{3}, T\left(a+b x+c x^{2}\right)=(a+c, c, b-c) ;\) \(B=\left\\{1, x, x^{2}\right\\}, D=\) standard b. \(T: \mathbf{M}_{22} \rightarrow \mathbb{R}^{4}\) \(T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=(a+b+c, b+c, c, d)\) \(B=\left\\{\begin{array}{l}\left.\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\\} \\ D=\text { standard }\end{array}\right.\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.