Chapter 9: Problem 3
In each case, find the matrix of the linear transformation \(T: V \rightarrow W\) corresponding to the bases \(B\) and \(D\) of \(V\) and \(W\), respectively. a. \(T: \mathbf{M}_{22} \rightarrow \mathbb{R}, T(A)=\operatorname{tr} A\) \(\begin{aligned} B=&\left\\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\\}, \\ D=\\{1\\} \end{aligned}\) b. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22}, T(A)=A^{T}\) \(\left.\begin{array}{rl}B & =D \\ & =\left\\{\left[\begin{array}{ll}1 & 0 \\\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\\}\end{array}\right\\}\) c. \(T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{3}, T[p(x)]=x p(x) ; B=\left\\{1, x, x^{2}\right\\}\) and \(\quad D=\left\\{1, x, x^{2}, x^{3}\right\\}\) d. \(\quad T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2}, T[p(x)]=p(x+1)\) \(\quad B=D=\left\\{1, x, x^{2}\right\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.