In each case, find \(P=P_{B_{0} \leftarrow B}\) and verify that \(P^{-1}
M_{B_{0}}(T) P=M_{B}(T)\) for the given operator \(T\).
a. \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T(a, b, c)=(2 a-b, b+c, c-3
a) ;\)
\(B_{0}=\\{(1,1,0),(1,0,1),(0,1,0)\\}\) and \(B\) is the
standard basis.
b. \(T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2},\)
\(\quad T\left(a+b x+c x^{2}\right)=(a+b)+(b+c) x+(c+a) x^{2}\)
\(B_{0}=\left\\{1, x, x^{2}\right\\}\) and \(B=\left\\{1-x^{2}, 1+x, 2
x+x^{2}\right\\}\)
c. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22}\)
\(T\left[\begin{array}{ll}a & b \\ c &
d\end{array}\right]=\left[\begin{array}{ll}a+d & b+c \\ a+c &
b+d\end{array}\right]\) \(B_{0}=\left\\{\left[\begin{array}{ll}1 & 0 \\ 0 &
0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 &
0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 &
0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 &
1\end{array}\right]\right\\}\) and \(B=\left\\{\left[\begin{array}{ll}1 & 1 \\\
0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 &
1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 &
1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 &
1\end{array}\right]\right\\}\)