Chapter 9: Problem 10
In each case, show that \(V=U \oplus W\). a. \(\begin{aligned} V &=\mathbb{R}^{4}, U=\operatorname{span}\\{(1,1,0,0),(0,1,1,0)\\}, \\ W &=\operatorname{span}\\{(0,1,0,1),(0,0,1,1)\\} \end{aligned}\) b. \(V=\mathbb{R}^{4}, U=\\{(a, a, b, b) \mid a, b\) in \(\mathbb{R}\\}\) \(W=\\{(c, d, c,-d) \mid c, d\) in \(\mathbb{R}\\}\) c. \(V=\mathbf{P}_{3}, U=\\{a+b x \mid a, b\) in \(\mathbb{R}\\},\) \(W=\left\\{a x^{2}+b x^{3} \mid a, b\right.\) in \(\left.\mathbb{R}\right\\}\) \(\begin{aligned} \text { d. } V &=\mathbf{M}_{22}, U=\left\\{\left[\begin{array}{ll}a & a \\ b & b\end{array}\right] \mid a, b \text { in } \mathbb{R}\right\\} \\ W &=\left\\{\left[\begin{array}{rl}a & b \\\ -a & b\end{array}\right] \mid a, b \text { in } \mathbb{R}\right\\} \end{aligned}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.