Chapter 9: Problem 1
In each case, find the coordinates of \(\mathbf{v}\) with respect to the basis \(B\) of the vector space \(V\). a. \(V=\mathbf{P}_{2}, \mathbf{v}=2 x^{2}+x-1, B=\left\\{x+1, x^{2}, 3\right\\}\) b. \(V=\mathbf{P}_{2}, \mathbf{v}=a x^{2}+b x+c, B=\left\\{x^{2}, x+1, x+2\right\\}\) \(\begin{aligned} \text { c. } & V=\mathbb{R}^{3}, \mathbf{v}=(1,-1,2), \\\ \quad B &=\\{(1,-1,0),(1,1,1),(0,1,1)\\} \\ \text { d. } V &=\mathbb{R}^{3}, \mathbf{v}=(a, b, c), \\ \quad B &=\\{(1,-1,2),(1,1,-1),(0,0,1)\\} \end{aligned}\) \(\begin{aligned} \text { e. } V &=\mathbf{M}_{22}, \mathbf{v}=\left[\begin{array}{rr}1 & 2 \\ -1 & 0\end{array}\right] \\ B &=\left\\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\\} \end{aligned}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.