Chapter 8: Problem 8
In each case, find a unitary matrix \(U\) such that \(U^{H} A U\) is diagonal. a. \(A=\left[\begin{array}{rr}1 & i \\ -i & 1\end{array}\right]\) b. \(A=\left[\begin{array}{cc}4 & 3-i \\ 3+i & 1\end{array}\right]\) c. \(A=\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right] ; a, b,\) real d. \(A=\left[\begin{array}{cc}2 & 1+i \\ 1-i & 3\end{array}\right]\) e. \(A=\left[\begin{array}{ccc}1 & 0 & 1+i \\ 0 & 2 & 0 \\ 1-i & 0 & 0\end{array}\right]\) f. \(A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1+i \\ 0 & 1-i & 2\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.