Chapter 8: Problem 5
For each matrix \(A,\) find an orthogonal matrix \(P\) such that \(P^{-1} A P\) is diagonal. a. \(A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\) b. \(A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]\) c. \(A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5\end{array}\right]\) d. \(A=\left[\begin{array}{lll}3 & 0 & 7 \\ 0 & 5 & 0 \\ 7 & 0 & 3\end{array}\right]\) e. \(A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]\) f. \(A=\left[\begin{array}{rrr}5 & -2 & -4 \\ -2 & 8 & -2 \\ -4 & -2 & 5\end{array}\right]\) g. \(A=\left[\begin{array}{llll}5 & 3 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 0 & 0 & 7 & 1 \\ 0 & 0 & 1 & 7\end{array}\right]\) h. \(A=\left[\begin{array}{rrrr}3 & 5 & -1 & 1 \\ 5 & 3 & 1 & -1 \\ -1 & 1 & 3 & 5 \\ 1 & -1 & 5 & 3\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.