Chapter 8: Problem 24
Show that the following are equivalent for an \(n \times n\) matrix \(P\). a. \(P\) is orthogonal. b. \(\|P \mathbf{x}\|=\|\mathbf{x}\|\) for all columns \(\mathbf{x}\) in \(\mathbb{R}^{n}\). c. \(\|P \mathbf{x}-P \mathbf{y}\|=\|\mathbf{x}-\mathbf{y}\|\) for all columns \(\mathbf{x}\) and \(\mathbf{y}\) in \(\mathbb{R}^{n}\) d. \((P \mathbf{x}) \cdot(P \mathbf{y})=\mathbf{x} \cdot \mathbf{y}\) for all columns \(\mathbf{x}\) and \(\mathbf{y}\) in \(\mathbb{R}^{n}\). [Hints: For \((\mathrm{c}) \Rightarrow(\mathrm{d}),\) see Exercise \(5.3 .14(\mathrm{a}) .\) For (d) \(\Rightarrow\) (a), show that column \(i\) of \(P\) equals \(P \mathbf{e}_{i}\), where \(\mathbf{e}_{i}\) is column \(i\) of the identity matrix. \(]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.