Chapter 8: Problem 10
A bilinear form \(\beta\) on \(\mathbb{R}^{n}\) is a function that assigns to every pair \(\mathbf{x}, \mathbf{y}\) of columns in \(\mathbb{R}^{n}\) a number \(\beta(\mathbf{x}, \mathbf{y})\) in such a way that $$ \begin{array}{l} \beta(r \mathbf{x}+s \mathbf{y}, \mathbf{z})=r \beta(\mathbf{x}, \mathbf{z})+s \beta(\mathbf{y}, \mathbf{z}) \\ \beta(\mathbf{x}, r \mathbf{y}+s \mathbf{z})=r \beta(\mathbf{x}, \mathbf{z})+s \beta(\mathbf{x}, \mathbf{z}) \end{array} $$ for all \(\mathbf{x}, \mathbf{y}, \mathbf{z}\) in \(\mathbb{R}^{n}\) and \(r, s\) in \(\mathbb{R} .\) If \(\beta(\mathbf{x}, \mathbf{y})=\beta(\mathbf{y}, \mathbf{x})\) for all \(\mathbf{x}, \mathbf{y}, \beta\) is called symmetric. a. If \(\beta\) is a bilinear form, show that an \(n \times n\) matrix \(A\) exists such that \(\beta(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} A \mathbf{y}\) for all \(\mathbf{x}, \mathbf{y}\). b. Show that \(A\) is uniquely determined by \(\beta\). c. Show that \(\beta\) is symmetric if and only if \(A=A^{T}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.