Chapter 8: Problem 1
In each case, find a symmetric matrix \(A\) such that \(q=\mathbf{x}^{T} B \mathbf{x}\) takes the form \(q=\mathbf{x}^{T} A \mathbf{x}\). a. \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\) b. \(\left[\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right]\) c. \(\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\) d. \(\left[\begin{array}{rrr}1 & 2 & -1 \\ 4 & 1 & 0 \\ 5 & -2 & 3\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.