Chapter 7: Problem 6
In each case either prove the statement or give an example in which it is false. Throughout, let \(T: V \rightarrow W\) be a linear transformation where \(V\) and \(W\) are finite dimensional. a. If \(V=W,\) then ker \(T \subseteq \operatorname{im} T\). b. If \(\operatorname{dim} V=5, \operatorname{dim} W=3,\) and \(\operatorname{dim}(\operatorname{ker} T)=2\), then \(T\) is onto. c. If \(\operatorname{dim} V=5\) and \(\operatorname{dim} W=4,\) then \(\operatorname{ker} T \neq\\{\mathbf{0}\\}\). d. If ker \(T=V,\) then \(W=\\{\mathbf{0}\\}\). e. If \(W=\\{\mathbf{0}\\},\) then \(\operatorname{ker} T=V\). f. If \(W=V,\) and \(\operatorname{im} T \subseteq \operatorname{ker} T,\) then \(T=0\). g. If \(\left\\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\\}\) is a basis of \(V\) and \(T\left(\mathbf{e}_{1}\right)=\mathbf{0}=T\left(\mathbf{e}_{2}\right),\) then \(\operatorname{dim}(\operatorname{im} T) \leq 1\) h. If \(\operatorname{dim}(\operatorname{ker} T) \leq \operatorname{dim} W,\) then \(\operatorname{dim} W \geq \frac{1}{2} \operatorname{dim} V\). i. If \(T\) is one-to-one, then \(\operatorname{dim} V \leq \operatorname{dim} W\). j. If \(\operatorname{dim} V \leq \operatorname{dim} W,\) then \(T\) is one-to- one. k. If \(T\) is onto, then \(\operatorname{dim} V \geq \operatorname{dim} W\). 1\. If \(\operatorname{dim} V \geq \operatorname{dim} W,\) then \(T\) is onto. m. If \(\left\\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\\}\) is independent, then \(\left\\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\\}\) is independent. n. If \(\left\\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\\}\) spans \(V,\) then \(\left\\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\\}\) spans \(W\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.