Chapter 7: Problem 6
Determine whether each of the following transformations \(T\) has an inverse and, if so, determine the action of \(T^{-1}\). a. \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) \(\quad T(x, y, z)=(x+y, y+z, z+x)\) b. \(T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}\) \(\quad T(x, y, z, t)=(x+y, y+z, z+t, t+x)\) c. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22}\) \(\quad T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}a-c & b-d \\ 2 a-c & 2 b-d\end{array}\right]\) d. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22}\) \(T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a+2 c & b+2 d \\ 3 c-a & 3 d-b\end{array}\right]\) e. \(T: \mathbf{P}_{2} \rightarrow \mathbb{R}^{3} ; T\left(a+b x+c x^{2}\right)=(a-c, 2 b, a+c)\) f. \(T: \mathbf{P}_{2} \rightarrow \mathbb{R}^{3} ; T(p)=[p(0), p(1), p(-1)]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.