In each case either prove the statement or give an example in which it is
false. Throughout, let \(T: V \rightarrow W\) be a linear transformation where
\(V\) and \(W\) are
finite dimensional.
a. If \(V=W,\) then ker \(T \subseteq \operatorname{im} T\).
b. If \(\operatorname{dim} V=5, \operatorname{dim} W=3,\) and
\(\operatorname{dim}(\operatorname{ker} T)=2\),
then \(T\) is onto.
c. If \(\operatorname{dim} V=5\) and \(\operatorname{dim} W=4,\) then
\(\operatorname{ker} T \neq\\{\mathbf{0}\\}\).
d. If ker \(T=V,\) then \(W=\\{\mathbf{0}\\}\).
e. If \(W=\\{\mathbf{0}\\},\) then \(\operatorname{ker} T=V\).
f. If \(W=V,\) and \(\operatorname{im} T \subseteq \operatorname{ker} T,\) then
\(T=0\).
g. If \(\left\\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\\}\) is a
basis of \(V\) and
\(T\left(\mathbf{e}_{1}\right)=\mathbf{0}=T\left(\mathbf{e}_{2}\right),\) then
\(\operatorname{dim}(\operatorname{im} T) \leq 1\)
h. If \(\operatorname{dim}(\operatorname{ker} T) \leq \operatorname{dim} W,\)
then \(\operatorname{dim} W \geq \frac{1}{2} \operatorname{dim} V\).
i. If \(T\) is one-to-one, then \(\operatorname{dim} V \leq \operatorname{dim}
W\).
j. If \(\operatorname{dim} V \leq \operatorname{dim} W,\) then \(T\) is one-to-
one.
k. If \(T\) is onto, then \(\operatorname{dim} V \geq \operatorname{dim} W\).
1\. If \(\operatorname{dim} V \geq \operatorname{dim} W,\) then \(T\) is onto.
m. If \(\left\\{T\left(\mathbf{v}_{1}\right), \ldots,
T\left(\mathbf{v}_{k}\right)\right\\}\) is independent, then
\(\left\\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\\}\) is independent.
n. If \(\left\\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\\}\) spans \(V,\)
then \(\left\\{T\left(\mathbf{v}_{1}\right), \ldots,
T\left(\mathbf{v}_{k}\right)\right\\}\)
spans \(W\)