Chapter 7: Problem 4
In each case, find a linear transformation with the given properties and compute \(T(\mathbf{v})\) $$ \begin{array}{l} \text { a. } T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} ; T(1,2)=(1,0,1) \\ \quad T(-1,0)=(0,1,1) ; \mathbf{v}=(2,1) \\ \text { b. } T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} ; T(2,-1)=(1,-1,1) \\\ \quad T(1,1)=(0,1,0) ; \mathbf{v}=(-1,2) \\ \text { c. } T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{3} ; T\left(x^{2}\right)=x^{3}, T(x+1)=0 \\ \quad T(x-1)=x ; \mathbf{v}=x^{2}+x+1 \\ \text { d. } T: \mathbf{M}_{22} \rightarrow \mathbb{R} ; T\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]=3, T\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]=-1, \\ \quad T\left[\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}\right]=0=T\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right] ; \mathbf{v}=\left[\begin{array}{ll} a & b \\ c & d \end{array}\right] \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.