Chapter 7: Problem 4
Exercise 7.3 .4 In each case, compute the action of \(S T\) and \(T S,\) and show that \(S T \neq T S\). a. \(S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) with \(S(x, y)=(y, x) ; T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) with \(T(x, y)=(x, 0)\) b. \(S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) with \(S(x, y, z)=(x, 0, z)\) \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) with \(T(x, y, z)=(x+y, 0, y+z)\) c. \(S: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2}\) with \(S(p)=p(0)+p(1) x+p(2) x^{2}\); \(T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2}\) with \(T\left(a+b x+c x^{2}\right)=b+c x+a x^{2}\) d. \(S: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22}\) with \(S\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]\); \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22}\) with \(T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}c & a \\ d & b\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.