Chapter 7: Problem 3
In each case, assume that \(T\) is a linear transformation. a. If \(T: V \rightarrow \mathbb{R}\) and \(T\left(\mathbf{v}_{1}\right)=1, T\left(\mathbf{v}_{2}\right)=-1,\) find \(T\left(3 \mathbf{v}_{1}-5 \mathbf{v}_{2}\right)\) b. If \(T: V \rightarrow \mathbb{R}\) and \(T\left(\mathbf{v}_{1}\right)=2, T\left(\mathbf{v}_{2}\right)=-3,\) find \(T\left(3 \mathbf{v}_{1}+2 \mathbf{v}_{2}\right)\) c. If \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) and \(T\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\\ 1\end{array}\right]\), \(T\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\\ 1\end{array}\right],\) find \(T\left[\begin{array}{r}-1 \\ 3\end{array}\right]\) d. If \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\) and \(T\left[\begin{array}{r}1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\\ 1\end{array}\right]\), \(T\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\\ 0\end{array}\right],\) find \(T\left[\begin{array}{r}1 \\ -7\end{array}\right]\) e. If \(T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2}\) and \(T(x+1)=x, T(x-1)=1,\) \(T\left(x^{2}\right)=0,\) find \(T\left(2+3 x-x^{2}\right)\) f. If \(T: \mathbf{P}_{2} \rightarrow \mathbb{R}\) and \(T(x+2)=1, T(1)=5\), \(T\left(x^{2}+x\right)=0,\) find \(T\left(2-x+3 x^{2}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.