Chapter 7: Problem 28
Let \(S\) and \(T\) be linear transformations \(V \rightarrow W,\) where \(\operatorname{dim} V=n\) and \(\operatorname{dim} W=m\) a. Show that \(\operatorname{ker} S=\operatorname{ker} T\) if and only if \(T=R S\) for some isomorphism \(R: W \rightarrow W\). [Hint: Let \(\left\\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{r}, \ldots, \mathbf{e}_{n}\right\\}\) be a basis of \(V\) such that \(\left\\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_{n}\right\\}\) is a basis of \(\operatorname{ker} S=\operatorname{ker} T\). Use Theorem 7.2 .5 to extend \(\left\\{S\left(\mathbf{e}_{1}\right), \ldots, S\left(\mathbf{e}_{r}\right)\right\\}\) and \(\left\\{T\left(\mathbf{e}_{1}\right), \ldots, T\left(\mathbf{e}_{r}\right)\right\\}\) to bases of \(\left.W .\right]\) b. Show that \(\operatorname{im} S=\operatorname{im} T\) if and only if \(T=S R\) for some isomorphism \(R: V \rightarrow V\). [Hint: Show that \(\operatorname{dim}(\operatorname{ker} S)=\operatorname{dim}(\) ker \(T)\) and choose bases \(\left\\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{r}, \ldots, \mathbf{e}_{n}\right\\}\) and \(\left\\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{r}, \ldots, \mathbf{f}_{n}\right\\}\) of \(V\) where \(\left\\{\mathbf{e}_{r+1}, \ldots, \mathbf{e}_{n}\right\\}\) and \(\left\\{\mathbf{f}_{r+1}, \ldots, \mathbf{f}_{n}\right\\}\) are bases of ker \(S\) and ker \(T,\) respectively. If \(1 \leq i \leq r,\) show that \(S\left(\mathbf{e}_{i}\right)=T\left(\mathbf{g}_{i}\right)\) for some \(\mathbf{g}_{i}\) in \(V,\) and prove that \(\left\\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{r}, \mathbf{f}_{r+1}, \ldots, \mathbf{f}_{n}\right\\}\) is a basis of \(\left.V .\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.