Chapter 7: Problem 2
In each case, (i) find a basis of ker \(T\), and (ii) find a basis of im \(T\). You may assume that \(T\) is linear. a. \(T: \mathbf{P}_{2} \rightarrow \mathbb{R}^{2} ; T\left(a+b x+c x^{2}\right)=(a, b)\) b. \(T: \mathbf{P}_{2} \rightarrow \mathbb{R}^{2} ; T(p(x))=(p(0), p(1))\) c. \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; T(x, y, z)=(x+y, x+y, 0)\) d. \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4} ; T(x, y, z)=(x, x, y, y)\) e. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22} ; T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a+b & b+c \\ c+d & d+a\end{array}\right]\) f. \(T: \mathbf{M}_{22} \rightarrow \mathbb{R} ; T\left[\begin{array}{ll}a & b \\\ c & d\end{array}\right]=a+d\) g. \(T: \mathbf{P}_{n} \rightarrow \mathbb{R} ; T\left(r_{0}+r_{1} x+\cdots+r_{n} x^{n}\right)=r_{n}\) h. \(T: \mathbb{R}^{n} \rightarrow \mathbb{R} ; T\left(r_{1}, r_{2}, \ldots, r_{n}\right)=r_{1}+r_{2}+\cdots+r_{n}\) i. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22} ; T(X)=X A-A X,\) where $$ A=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] $$ j. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22} ; T(X)=X A,\) where \(A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.