Chapter 7: Problem 1
Show that each of the following functions is a linear transformation. a. \(T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} ; T(x, y)=(x,-y)\) (reflection in the \(x\) axis) b. \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; T(x, y, z)=(x, y,-z)\) (reflection in the \(x\) - \(y\) plane) c. \(T: \mathbb{C} \rightarrow \mathbb{C} ; T(z)=\bar{z}\) (conjugation) d. \(T: \mathbf{M}_{m n} \rightarrow \mathbf{M}_{k l} ; T(A)=P A Q, P\) a \(k \times m\) matrix, \(Q\) an \(n \times l\) matrix, both fixed e. \(T: \mathbf{M}_{n n} \rightarrow \mathbf{M}_{n n} ; T(A)=A^{T}+A\) f. \(T: \mathbf{P}_{n} \rightarrow \mathbb{R} ; T[p(x)]=p(0)\) g. \(T: \mathbf{P}_{n} \rightarrow \mathbb{R} ; T\left(r_{0}+r_{1} x+\cdots+r_{n} x^{n}\right)=r_{n}\) h. \(T: \mathbb{R}^{n} \rightarrow \mathbb{R} ; T(\mathbf{x})=\mathbf{x} \cdot \mathbf{z}, \mathbf{z}\) a fixed vector in \(\mathbb{R}^{n}\) i. \(T: \mathbf{P}_{n} \rightarrow \mathbf{P}_{n} ; T[p(x)]=p(x+1)\) j. \(T: \mathbb{R}^{n} \rightarrow V ; T\left(r_{1}, \cdots, r_{n}\right)=r_{1} \mathbf{e}_{1}+\cdots+r_{n} \mathbf{e}_{n}\) where \(\left\\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\\}\) is a fixed basis of \(V\) k. \(T: V \rightarrow \mathbb{R} ; T\left(r_{1} \mathbf{e}_{1}+\cdots+r_{n} \mathbf{e}_{n}\right)=r_{1},\) where \(\left\\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\\}\) is a fixed basis of \(V\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.