Chapter 6: Problem 2
Which of the following subsets of \(V\) are independent? a. \(V=\mathbf{P}_{2} ;\left\\{x^{2}+1, x+1, x\right\\}\) b. \(V=\mathbf{P}_{2} ;\left\\{x^{2}-x+3,2 x^{2}+x+5, x^{2}+5 x+1\right\\}\) c. \(V=\mathbf{M}_{22} ;\left\\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\\}\) d. \(V=\mathbf{M}_{22}\) \(\left\\{\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]\right\\}\) e. \(V=\mathbf{F}[1,2] ;\left\\{\frac{1}{x}, \frac{1}{x^{2}}, \frac{1}{x^{3}}\right\\}\) f. \(V=\mathbf{F}[0,1] ;\left\\{\frac{1}{x^{2}+x-6}, \frac{1}{x^{2}-5 x+6}, \frac{1}{x^{2}-9}\right\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.