Chapter 5: Problem 2
In each case find a basis of the subspace \(U\) a. \(U=\operatorname{span}\\{(1,-1,0,3),(2,1,5,1),(4,-2,5,7)\\}\) b. \(U=\operatorname{span}\\{(1,-1,2,5,1),(3,1,4,2,7), (1,1,0,0,0),(5,1,6,7,8)\\}\) c. \(U=\operatorname{span}\left\\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\\ 1\end{array}\right]\right\\}\) d \(U=\operatorname{span}\left\\{\left[\begin{array}{r}1 \\ 5 \\\ -6\end{array}\right],\left[\begin{array}{r}2 \\ 6 \\\ -8\end{array}\right],\left[\begin{array}{r}3 \\ 7 \\\ -10\end{array}\right],\left[\begin{array}{r}4 \\ 8 \\\ 12\end{array}\right]\right\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.