Chapter 5: Problem 18
Let \(\left\\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\\}\) be an orthogonal basis of \(\mathbb{R}^{n} .\) Given \(\mathbf{x}\) and \(\mathbf{y}\) in \(\mathbb{R}^{n},\) show that $$ \mathbf{x} \cdot \mathbf{y}=\frac{\left(\mathbf{x} \cdot \mathbf{e}_{1}\right)\left(\mathbf{y} \cdot \mathbf{e}_{1}\right)}{\left\|\mathbf{e}_{1}\right\|^{2}}+\cdots+\frac{\left(\mathbf{x} \cdot \mathbf{e}_{n}\right)\left(\mathbf{y} \cdot \mathbf{e}_{n}\right)}{\left\|\mathbf{e}_{n}\right\|^{2}} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.