Chapter 5: Problem 13
a. Show that \(\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}\) if and only if \(\mathbf{x}\) is orthogonal to \(\mathbf{y}\). b. If \(\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}1 \\ 0\end{array}\right]\) and \(\mathbf{z}=\left[\begin{array}{r}-2 \\ 3\end{array}\right],\) show that \(\|\mathbf{x}+\mathbf{y}+\mathbf{z}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+\|\mathbf{z}\|^{2}\) but \(\mathbf{x} \cdot \mathbf{y} \neq 0, \mathbf{x} \cdot \mathbf{z} \neq 0,\) and \(\mathbf{y} \cdot \mathbf{z} \neq 0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.