Chapter 5: Problem 1
By computing the trace, determinant, and rank, show that \(A\) and \(B\) are not similar in each case. a. \(A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]\) b. \(A=\left[\begin{array}{rr}3 & 1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]\) c. \(A=\left[\begin{array}{rr}2 & 1 \\ 1 & -1\end{array}\right], B=\left[\begin{array}{rr}3 & 0 \\ 1 & -1\end{array}\right]\) d. \(A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right], B=\left[\begin{array}{rr}2 & -1 \\ 3 & 2\end{array}\right]\) e. \(A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right], B=\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 4 & -2 \\\ -3 & 6 & -3\end{array}\right]\) f. \(A=\left[\begin{array}{rrr}1 & 2 & -3 \\ 1 & -1 & 2 \\ 0 & 3 & -5\end{array}\right], B=\left[\begin{array}{rrr}-2 & 1 & 3 \\ 6 & -3 & -9 \\\ 0 & 0 & 0\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.