Chapter 4: Problem 24
Find the point of intersection (if any) of the following pairs of lines. $$ \text { a. } \begin{array}{ll} x=3+t & x=4+2 s \\ & y=1-2 t & y=6+3 s \\ & z=3+3 t & z=1+s \\ & x=1-t & x=2 s \end{array} $$ b. \(\quad y=2+2 t \quad y=1+s\) $$ \begin{array}{c} z=-1+3 t \quad z=3 \\ \text { c. }\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{r} 3 \\ -1 \\ 2 \end{array}\right]+t\left[\begin{array}{r} 1 \\ 1 \\ -1 \end{array}\right] \\ {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{r} 1 \\ 1 \\ -2 \end{array}\right]+s\left[\begin{array}{l} 2 \\ 0 \\ 3 \end{array}\right]} \end{array} $$ d. \(\left[\begin{array}{l}x \\ y \\\ z\end{array}\right]=\left[\begin{array}{r}4 \\ -1 \\\ 5\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\) \(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}2 \\\ -7 \\ 12\end{array}\right]+s\left[\begin{array}{r}0 \\ -2 \\\ 3\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.