Chapter 4: Problem 21
In each case either prove the statement or give an example showing that it is false. a. The zero vector \(\mathbf{0}\) is the only vector of length 0 . b. If \(\|\mathbf{v}-\mathbf{w}\|=0,\) then \(\mathbf{v}=\mathbf{w}\). c. If \(\mathbf{v}=-\mathbf{v},\) then \(\mathbf{v}=\mathbf{0}\). d. If \(\|\mathbf{v}\|=\|\mathbf{w}\|,\) then \(\mathbf{v}=\mathbf{w}\). e. If \(\|\mathbf{v}\|=\|\mathbf{w}\|,\) then \(\mathbf{v}=\pm \mathbf{w}\). f. If \(\mathbf{v}=t \mathbf{w}\) for some scalar \(t,\) then \(\mathbf{v}\) and \(\mathbf{w}\) have the same direction. \(\mathrm{g}\). If \(\mathbf{v}, \mathbf{w},\) and \(\mathbf{v}+\mathbf{w}\) are nonzero, and \(\mathbf{v}\) and \(\mathbf{v}+\mathbf{w}\) parallel, then \(\mathbf{v}\) and \(\mathbf{w}\) are parallel. h. \(\|-5 \mathbf{v}\|=-5\|\mathbf{v}\|,\) for all \(\mathbf{v}\). i. If \(\|\mathbf{v}\|=\|2 \mathbf{v}\|,\) then \(\mathbf{v}=\mathbf{0}\). j. \(\|\mathbf{v}+\mathbf{w}\|=\|\mathbf{v}\|+\|\mathbf{w}\|,\) for all \(\mathbf{v}\) and \(\mathbf{w}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.