Chapter 4: Problem 15
In each case, find a vector equation of the line. a. Passing through \(P(3,-1,4)\) and perpendicular to the plane \(3 x-2 y-z=0\) b. Passing through \(P(2,-1,3)\) and perpendicular to the plane \(2 x+y=1\) c. Passing through \(P(0,0,0)\) and perpendicular $$ \begin{array}{l} \text { to the lines }\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right]+t\left[\begin{array}{r} 2 \\ 0 \\ -1 \end{array}\right] \text { and } \\ {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{r} 2 \\ 1 \\ -3 \end{array}\right]+t\left[\begin{array}{r} 1 \\ -1 \\ 5 \end{array}\right]} \end{array} $$ d. Passing through \(P(1,1,-1)\), and perpendicular to the lines $$ \begin{array}{l} {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 2 \\ 0 \\ 1 \end{array}\right]+t\left[\begin{array}{r} 1 \\ 1 \\ -2 \end{array}\right] \text { an }} \\ {\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{r} 5 \\ 5 \\ -2 \end{array}\right]+t\left[\begin{array}{r} 1 \\ 2 \\ -3 \end{array}\right]} \end{array} $$ e. Passing through \(P(2,1,-1)\), intersecting the line \(\left[\begin{array}{l}x \\\ y \\ z\end{array}\right]=\left[\begin{array}{r}1 \\ 2 \\\ -1\end{array}\right]+t\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right],\) and perpendicular to that line. f. Passing through \(P(1,1,2)\), intersecting the line \(\left[\begin{array}{l}x \\\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\) and perpendicular to line.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.