Chapter 4: Problem 1
In each case show that that \(T\) is either projection on a line, reflection in a line, or rotation through an angle, and find the line or angle. a. \(T\left[\begin{array}{l}x \\\ y\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}x+2 y \\ 2 x+4 y\end{array}\right]\) b. \(T\left[\begin{array}{l}x \\\ y\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}x-y \\\ y-x\end{array}\right]\) c. \(T\left[\begin{array}{l}x \\\ y\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-x-y \\\ x-y\end{array}\right]\) d. \(T\left[\begin{array}{l}x \\\ y\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}-3 x+4 y \\ 4 x+3 y\end{array}\right]\) e. \(T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-y \\\ -x\end{array}\right]\) f. \(T\left[\begin{array}{l}x \\\ y\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}x-\sqrt{3} y \\ \sqrt{3} x+y\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.