Chapter 3: Problem 34
Let \(A\) and \(B\) denote invertible \(n \times n\) matrices. Show that: a. \(\operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A\) (here \(\left.n \geq 2\right)\) [Hint: See Example 3.2.8.] b. \(\operatorname{adj}\left(A^{-1}\right)=(\operatorname{adj} A)^{-1}\) c. \(\operatorname{adj}\left(A^{T}\right)=(\operatorname{adj} A)^{T}\) d. \(\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)\) [Hint: Show that \(A B \operatorname{adj}(A B)=A B \operatorname{adj} B \operatorname{adj} A .]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.