Chapter 3: Problem 27
Let \(A\) be an \(n \times n\) matrix. Given a polynomial \(p(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}+\) we write \(p(A)=a_{0} l+a_{1} A+\cdots+a_{m} A^{m}\) For example, if \(p(x)=2-3 x+5 x^{2}\), then \(p(A)=2 l-3 A+5 A^{2}\). The characteristic polynomial of \(A\) is defined to be \(c_{A}(x)=\operatorname{det}[x I-A],\) and the Cayley. Hamilton theorem asserts that \(c_{A}(A)=0\) for any matrix \(A\). a. Verify the theorem for $$ \text { i. } A=\left[\begin{array}{rr} 3 & 2 \\ 1 & -1 \end{array}\right] \quad \text { ii. } A=\left[\begin{array}{rrr} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 8 & 2 & 2 \end{array}\right] $$ b. Prove the theorem for \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.